Centre de diffusion de revues académiques mathématiques

 
 
 
 

Winter Braids Lecture Notes

Table des matières de ce volume | Article précédent | Article suivant
Benjamin Audoux
The Rasmussen invariant and the Milnor conjecture
Winter Braids Lecture Notes, 1 : Winter Braids IV (Dijon, 2014) (2014), Exp. No. 1, 19 p., doi: 10.5802/wbln.2
Article PDF

Résumé - Abstract

These notes were written for a series of lectures on the Rasmussen invariant and the Milnor conjecture, given at Winter Braids IV in February 2014.

Bibliographie

[1] John A. Baldwin & William D. Gillam, “Computations of Heegaard-Floer knot homology”, J. Knot Theory Ramifications 21 (2012) no. 8  MR 2925428 |  Zbl 1288.57010
[2] Dror Bar-Natan, “On Khovanov’s categorification of the Jones polynomial”, Algebr. Geom. Topol. 2 (2002), p. 337-370  MR 1917056 |  Zbl 0998.57016
[3] Christian Blanchet, “An oriented model for Khovanov homology”, J. Knot Theory Ramifications 19 (2010) no. 2, p. 291-312  MR 2647055 |  Zbl 1195.57024
[4] Michel Boileau & Claude Weber, “Le problème de J. Milnor sur le nombre gordien des noeuds algébriques”, Noeuds, tresses et singularités, C. R. Sémin., Plans-sur-Bex 1982, Monogr. Enseign. Math. 31, 49-98 (1983). 1983  MR 728580 |  Zbl 0556.57001
[5] Carmen Livia Caprau, “$\text{sl}(2)$ tangle homology with a parameter and singular cobordisms”, Algebr. Geom. Topol. 8 (2008) no. 2, p. 729-756  MR 2443094 |  Zbl 1148.57016
[6] J.Scott Carter & Masahico Saito, “Reidemeister moves for surface isotopies and their interpretation as moves to movies.”, J. Knot Theory Ramifications 2 (1993) no. 3, p. 251-284  MR 1238875 |  Zbl 0808.57020
[7] Timothy Chow, “You could have invented spectral sequences”, Notices Amer. Math. Soc. 53 (2006) no. 1, p. 15-19  MR 2189946 |  Zbl 1092.55014
[8] David Clark, Scott Morrison & Kevin Walker, “Fixing the functoriality of Khovanov homology”, Geom. Topol. 13 (2009) no. 3, p. 1499-1582  MR 2496052 |  Zbl 1169.57012
[9] Paolo Ghiggini, “Knot Floer homology detects genus-one fibred knots”, Am. J. Math. 130 (2008) no. 5, p. 1151-1169  MR 2450204 |  Zbl 1149.57019
[10] Magnus Jacobsson, “An invariant of link cobordisms from Khovanov’s homology theory”, Algebr. Geom. Topol (2004), p. 1211-1251  MR 2113903 |  Zbl 1072.57018
[11] A. Kawauchi, T Shibuya & S. Suzuki, “Descriptions on surfaces in four space. I. Normal forms.”, Math. Semin. Notes, Kobe Univ. 10 (1982), p. 75-126  MR 672939 |  Zbl 0506.57014
[12] Mikhail Khovanov, “A categorification of the Jones polynomial”, Duke Math. J. 101 (2000) no. 3, p. 359-426  MR 1740682 |  Zbl 0960.57005
[13] Peter B. Kronheimer & Tomasz S. Mrowka, “Gauge theory for embedded surfaces. I.”, Topology 32 (1993) no. 4, p. 773-826  Zbl 0799.57007
[14] Peter B. Kronheimer & Tomasz S. Mrowka, “Khovanov homology is an unknot-detector”, Publ. Math., Inst. Hautes Étud. Sci. 113 (2011), p. 97-208  Zbl 1241.57017
[15] Eun Soo Lee, “An endomorphism of the Khovanov invariant”, Adv. Math. 197 (2005) no. 2, p. 554-586  MR 2173845 |  Zbl 1080.57015
[16] John McCleary, A user’s guide to spectral sequences. 2nd ed., Cambridge: Cambridge University Press, 2001  MR 1793722 |  Zbl 0959.55001
[17] John W. Milnor, “Singular points of complex hypersurfaces”, Annals of Mathematics Studies. 61. Princeton, N.J.: Princeton University Press and the University of Tokyo Press. 122 p. (1968). 1968  Zbl 0184.48405
[18] Kunio Murasugi, “On a certain numerical invariant of link types”, Trans. Am. Math. Soc. 117 (1965), p. 387-422  MR 171275 |  Zbl 0137.17903
[19] Yi Ni, “Knot Floer homology detects fibred knots”, Invent. Math. 170 (2007) no. 3, p. 577-608  MR 2357503 |  Zbl 1138.57031
[20] Yi Ni, “Erratum: Knot Floer homology detects fibred knots”, Invent. Math. 177 (2009) no. 1, p. 235-238  MR 2507641 |  Zbl 1162.57300
[21] Peter Ozsváth & Zoltán Szabó, “Holomorphic disks and genus bounds”, Geom. Topol. 8 (2004), p. 311-334  Zbl 1056.57020
[22] Peter Ozsváth & Zoltán Szabó, “Holomorphic disks and knot invariants”, Adv. Math. 186 (2004) no. 1, p. 58-116  Zbl 1062.57019
[23] Jacob Rasmussen, Floer homology and knot complements, Ph. D. Thesis, Harvard University, 2003  MR 2704683
[24] Jacob Rasmussen, “Khovanov homology and the slice genus”, Invent. Math. 182 (2010) no. 2, p. 419-447  MR 2729272 |  Zbl 1211.57009
[25] Kurt Reidemeister, Einführung in die kombinatorische Topologie, Wissenschaftliche Buchgesellschaft, Darmstadt, 1972, Unveränderter reprografischer Nachdruck der Ausgabe Braunschweig 1951  MR 345088
[26] Paul Turner, “Five lectures on Khovanov homology”, arXiv:0606464 2006
[27] Paul Turner, “A hitchhiker’s guide to Khovanov homology”, arXiv:1409.6442 2014
[28] Siwach Vikash & Prabhakar Madeti, “A method for unknotting torus knots”, arXiv:1207.4918 2012
[29] Oleg Viro, “Khovanov homology, its definitions and ramifications”, Fund. Math. 184 (2004), p. 317-342  MR 2128056 |  Zbl 1078.57013
[30] Liam Watson, “Knots with identical Khovanov homology”, Algebr. Geom. Topol. 7 (2007), p. 1389-1407  MR 2350287 |  Zbl 1137.57020
[31] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994  MR 1269324 |  Zbl 0797.18001
Copyright Cellule MathDoc 2018 | Crédit | Plan du site