Centre de diffusion de revues académiques mathématiques

 
 
 
 

Winter Braids Lecture Notes

Table des matières de ce volume | Article précédent | Article suivant
Luis Paris
Mapping class groups of non-orientable surfaces for beginners
(Mapping class groups of non-orientable surfaces for beginners)
Winter Braids Lecture Notes, 1 : Winter Braids IV (Dijon, 2014) (2014), Exp. No. 3, 17 p., doi: 10.5802/wbln.4
Article PDF

Résumé - Abstract

The present paper is the notes of a mini-course addressed mainly to non-experts. Its purpose is to provide a first approach to the theory of mapping class groups of non-orientable surfaces.

Bibliographie

[1] J. S. Birman, D. R. J. Chillingworth. On the homeotopy group of a non-orientable surface. Proc. Cambridge Philos. Soc. 71 (1972), 437–448.  MR 300288 |  Zbl 0232.57001
[2] J. S. Birman, H. M. Hilden. On the mapping class groups of closed surfaces as covering spaces. Advances in the theory of Riemann surfaces (Proc. Conf., Stony Brook, N.Y., 1969), pp. 81–115. Ann. of Math. Studies, No. 66. Princeton Univ. Press, Princeton, N.J., 1971.  MR 292082 |  Zbl 0217.48602
[3] D. B. A. Epstein. Curves on $2$-manifolds and isotopies. Acta Math. 115 (1966), 83–107.  MR 214087 |  Zbl 0136.44605
[4] B. Farb, D. Margalit. A primer on mapping class groups. Princeton Mathematical Series, 49. Princeton University Press, Princeton, NJ, 2012.  MR 2850125 |  Zbl 1245.57002
[5] A. Fathi, F. Laudenbach, V. Poénaru. Travaux de Thurston sur les surfaces. Séminaire Orsay. Astérisque, 66–67. Société Mathématique de France, Paris, 1979.  MR 568308 |  Zbl 0446.57010
[6] M. Gendulphe. Paysage systolique des surfaces hyperboliques de caractéristique $-1$. Preprint. Available at http://matthieu.gendulphe.com/Gendulphe-PaysageSystolique.pdf
[7] A. Ishida. The structure of subgroup of mapping class groups generated by two Dehn twists. Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 10, 240–241.  MR 1435728 |  Zbl 0883.57016
[8] N. V. Ivanov. Automorphisms of complexes of curves and of Teichmüller spaces. Internat. Math. Res. Notices 1997, no. 14, 651–666.  MR 1460387 |  Zbl 0890.57018
[9] M. Korkmaz. Mapping class groups of nonorientable surfaces. Geom. Dedicata 89 (2002), 109–133.  MR 1890954 |  Zbl 1016.57013
[10] W. B. R. Lickorish. Homeomorphisms of non-orientable two-manifolds. Proc. Cambridge Philos. Soc. 59 (1963), 307–317.  MR 145498 |  Zbl 0115.40801
[11] L. Paris, D. Rolfsen. Geometric subgroups of mapping class groups. J. Reine Angew. Math. 521 (2000), 47–83.  MR 1752295 |  Zbl 1007.57014
[12] M. Stukow. Dehn twists on nonorientable surfaces. Fund. Math. 189 (2006), no. 2, 117–147.  MR 2214574 |  Zbl 1101.57008
[13] M. Stukow. Commensurability of geometric subgroups of mapping class groups. Geom. Dedicata 143 (2009), 117–142.  MR 2576298 |  Zbl 1195.57043
[14] M. Stukow. Subgroup generated by two Dehn twists on nonorientable surface. Preprint, arXiv:1310.3033.
[15] Wu Yingqing. Canonical reducing curves of surface homeomorphism. Acta Math. Sinica (N.S.) 3 (1987), no. 4, 305–313.  MR 930761 |  Zbl 0651.57008
[16] H. Zieschang. On the homeotopy group of surfaces. Math. Ann. 206 (1973), 1–21.  MR 335794 |  Zbl 0248.55001
Copyright Cellule MathDoc 2018 | Crédit | Plan du site