Centre de diffusion de revues académiques mathématiques

 
 
 
 

Winter Braids Lecture Notes

Table des matières de ce volume | Article précédent
Nermin Salepci
Lefschetz Fibrations and real Lefschetz fibrations
(Lefschetz Fibrations and real Lefschetz fibrations)
Winter Braids Lecture Notes, 1 : Winter Braids IV (Dijon, 2014) (2014), Exp. No. 4, 19 p., doi: 10.5802/wbln.5
Article PDF

Résumé - Abstract

This note is based on the lectures that I have given during the winter school Winter Braids IV, School on algebraic and topological aspects of braid groups held in Dijon on 10 - 13 February 2014. The aim of series of three lectures was to give an overview of geometrical and topological properties of 4-dimensional Lefschetz fibrations. Meanwhile, I could briefly introduce real Lefschetz fibrations, fibrations which have certain symmetry, and could present some interesting features of them.

This note will be yet another survey article on Lefschetz fibrations. There are excellent lecture notes/ survey papers/ book chapters on Lefschetz fibrations. You can, for example, look at [3], [11], [14], [20] among many others. In this note I intent to take my time on real Lefschetz fibrations as much as on Lefschetz fibrations in order not to repeat what was already done perfectly.

Bibliographie

[1] E. Artin, “Theory of braids”, Ann. of Math. (2) 48 (1947), p. 101-126  MR 19087 |  Zbl 0030.17703
[2] Denis Auroux, “A stable classification of Lefschetz fibrations”, Geom. Topol. 9 (2005), p. 203-217 (electronic) Article |  MR 2115673 |  Zbl 1084.57024
[3] Denis Auroux, Fabrizio Catanese, Marco Manetti, Paul Seidel, Bernd Siebert, Ivan Smith & Gang Tian, Symplectic 4-manifolds and algebraic surfaces, Lecture Notes in Mathematics 1938, Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence, 2008, Lectures from the C.I.M.E. Summer School held in Cetraro, September 2–10, 2003, Edited by Catanese and Tian Article |  MR 2463711
[4] Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics 1764, Springer-Verlag, Berlin, 2001 Article |  MR 1853077 |  Zbl 1016.53001
[5] Kenneth Nicholas Chakiris, The monodromy of genus two pencils, ProQuest LLC, Ann Arbor, MI, 1983, Thesis (Ph.D.)–Columbia University  MR 2633010
[6] Gaston Darboux, “Sur le problème de Pfaff”, Bull. Sci. Math. 6 (1882), p. 1-35
[7] Alex Degtyarev & Nermin Salepci, “Products of pairs of Dehn twists and maximal real Lefschetz fibrations”, Nagoya Math. J. 210 (2013), p. 83-132 Article |  MR 3079276 |  Zbl 1304.14074
[8] M. Dehn, “Die Gruppe der Abbildungsklassen”, Acta Math. 69 (1938) no. 1, p. 135-206, Das arithmetische Feld auf Flächen Article |  MR 1555438 |  Zbl 0019.25301 |  JFM 64.1276.01
[9] S. K. Donaldson, “Lefschetz pencils on symplectic manifolds”, J. Differential Geom. 53 (1999) no. 2, p. 205-236  MR 1802722 |  Zbl 1040.53094
[10] Clifford J. Earle & James Eells, “A fibre bundle description of Teichmüller theory”, J. Differential Geometry 3 (1969), p. 19-43  MR 276999 |  Zbl 0185.32901
[11] Terry Fuller, “Lefschetz fibrations of 4-dimensional manifolds”, Cubo Mat. Educ. 5 (2003) no. 3, p. 275-294  MR 2065735 |  Zbl 1162.57303
[12] Damien Gayet, “Hypersurfaces symplectiques réelles et pinceaux de Lefschetz réels”, J. Symplectic Geom. 6 (2008) no. 3, p. 247-266  MR 2448826 |  Zbl 1170.53069
[13] Robert E. Gompf, “Toward a topological characterization of symplectic manifolds”, J. Symplectic Geom. 2 (2004) no. 2, p. 177-206  MR 2108373 |  Zbl 1084.53072
[14] Robert E. Gompf & András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society, Providence, RI, 1999  MR 1707327 |  Zbl 0933.57020
[15] A. Kas, “On the handlebody decomposition associated to a Lefschetz fibration”, Pacific J. Math. 89 (1980) no. 1, p. 89-104  MR 596919 |  Zbl 0457.14011
[16] Mustafa Korkmaz, “Noncomplex smooth 4-manifolds with Lefschetz fibrations”, Internat. Math. Res. Notices (2001) no. 3, p. 115-128 Article |  MR 1810689 |  Zbl 0977.57020
[17] Dusa McDuff & Dietmar Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, Oxford Science Publications  MR 1373431 |  Zbl 0844.58029
[18] Boris Moishezon, Complex surfaces and connected sums of complex projective planes, Lecture Notes in Mathematics, Vol. 603, Springer-Verlag, Berlin-New York, 1977, With an appendix by R. Livne  MR 491730 |  Zbl 0392.32015
[19] Burak Ozbagci & András I. Stipsicz, “Noncomplex smooth $4$-manifolds with genus-$2$ Lefschetz fibrations”, Proc. Amer. Math. Soc. 128 (2000) no. 10, p. 3125-3128 Article |  MR 1670411 |  Zbl 0951.57015
[20] Burak Ozbagci & András I. Stipsicz, Surgery on contact 3-manifolds and Stein surfaces, Bolyai Society Mathematical Studies 13, Springer-Verlag, Berlin; János Bolyai Mathematical Society, Budapest, 2004 Article |  MR 2114165 |  Zbl 1067.57024
[21] Nermin Salepci, Real Lefschetz fibrations, Université Louis Pasteur. Institut de Recherche Mathématique Avancée (IRMA), Strasbourg, 2007, Thèse, Université Louis Pasteur, Strasbourg, 2007  MR 2780321 |  Zbl 1216.55004
[22] Nermin Salepci, “Real elements in the mapping class group of $T^2$”, Topology Appl. 157 (2010) no. 16, p. 2580-2590 Article |  MR 2719402 |  Zbl 1213.57024
[23] Nermin Salepci, “Classification of totally real elliptic Lefschetz fibrations via necklace diagrams”, J. Knot Theory Ramifications 21 (2012) no. 9 Article |  MR 2926572 |  Zbl 1270.57063
[24] Nermin Salepci, “Invariants of totally real Lefschetz fibrations”, Pacific J. Math. 256 (2012) no. 2, p. 407-434 Article |  MR 2944983 |  Zbl 1282.57027
[25] Bernd Siebert & Gang Tian, “On hyperelliptic $C^\infty $-Lefschetz fibrations of four-manifolds”, Commun. Contemp. Math. 1 (1999) no. 2, p. 255-280 Article |  MR 1696101 |  Zbl 0948.57018
[26] Bernd Siebert & Gang Tian, “On the holomorphicity of genus two Lefschetz fibrations”, Ann. of Math. (2) 161 (2005) no. 2, p. 959-1020 Article |  MR 2153404 |  Zbl 1090.53072
[27] Ivan Smith, “Lefschetz fibrations and the Hodge bundle”, Geom. Topol. 3 (1999), p. 211-233 (electronic) Article |  MR 1701812 |  Zbl 0929.53047
[28] Ivan Smith, Symplectic Geometry of Lefschetz Fibrations, University of Oxford, 1999, Ph.D. University of Oxford
[29] N. E. Steenrod, “The classification of sphere bundles”, Ann. of Math. (2) 45 (1944), p. 294-311  MR 9857 |  Zbl 0060.41412
[30] W. P. Thurston, “Some simple examples of symplectic manifolds”, Proc. Amer. Math. Soc. 55 (1976) no. 2, p. 467-468  MR 402764 |  Zbl 0324.53031
Copyright Cellule MathDoc 2018 | Crédit | Plan du site